
1

Convolutional Neural Networks
for Speech Recognition

Berkan Hiziroglu, Adnan Alperen Demirci

Koç University

Abstract—The speech recognition models previously included

Gaussian Mixture Models with a hidden Markov model (HMM).

The Gaussian mixture models are replaced with the deep neural

network structures. The convolutional neural networks (CNN)

have improved significantly the performance of the speech

recognition systems, as they model the complex correlations of

the speech features. In this project, we trained a CNN - HMM

hybrid model, and experimented on the TIMIT phone recognition

dataset. In the report, we describe the structure and the use of

CNN model applied to the speech features. Then, we describe

the decoding and training process of the HMM.

I. INTRODUCTION

T
HE purpose of this project is to create an automatic
speech recognition framework using convolutional neu-

ral networks (CNN) and Hidden Markov models (HMM).
This paper proposes a framework which transcripts a human
speech into spoken words. Human speech signals can vary
tremendously from other human speech signals due to the
speaker’s attributes, style, tone and other environmental noises.
Automatic speech recognition framework maps a given input
variable-length speech signal into variable-length sequences of
phonemes. HMMs are used in this framework for modeling the
temporal behavior of speech signals using state sequences. The
conventional model before the use of deep neural networks
is the Gaussian mixture models with a HMM. The Gaussian
mixtures are used for modeling the speech features and
calculating the posterior probabilites.For acoustic modeling,
these models are replaced by the CNNs which were used
as the likelihood or observation probability extractors. These
observation probabilities are used as the emission probabilities
in the HMM. For language modeling which is the other
important part of the speech recognition, the n grams method is
used which is also used in this project. But, this convention has
changed with the use of recurrent neural networks which do
not make the Markov assumption, so make better assumptions.

II. CONVOLUTIONAL NEURAL NETWORKS AND THEIR
USE IN ASR

A. Organizing the Input Data to CNN

To use Convolutional Neural Networks for speech pro-
cessing, the input data should be organized as a features of the
input speech. The feature extraction can be applied in variety
of ways. The usage of MFCC causes problems because of the
locality problems proposed in the original paper, therefore we
have use MFSC features for the input data. The log-energies

computations are made directly from the mel-frequency spec-
tral coefficients(MFSC). The MFSC library for Julia or MFSC
toolbox for MATLAB can be used for feature extraction.
CNNs run a filter over the input data at both training and
test time. This filter learns from various data samples. The
use of features of the input data make the filter more generic
to unseen data. Weight sharing refers to the decision to use the
same weights at every position of the window. This procedure
can be called local because the individual units of the input
are calculated at a particular positioning of the filter. By
convolving this filter throughout the features, the filter also
learns the connection between a feature and it’s following
feature. This increases the recognition of the convolutional
neural network. If the feature maps were to given one at a
single time for each input speech, then the CNN would not
have the information about the connection between frames.
Therefore, the usage of frames increase the accuracy of the
model significantly. We used 40 features for every input speech
data.

Fig. 1. CNN Layers

There are various ways of organizing the MFSC features
while mapping the features for the inputs of convolutional
neural network.

The input to the convolutional neural network is a 4D
vector. The first two dimensions are 40 and 15. The number of
features equal to 40 and at each iteration 15 frames are shown
to convolutional neural network. The third dimension is the
number of filters which is 150 or 80 (for full weight sharing
and least weight sharing respectively). We used 150 filters
because the model has full weight sharing. The last dimension
is the batch size. We have used 500 as batch size. Normally, a
larger batch size (i.e., 1000) would be more efficient in terms
of time complexity. However, this model is trained on Amazon
GPU instances and the relation between the frame number



2

Fig. 2. The scheme of the convolutional network shown for an arbitrary
input. The features maps are first convolved with the filter. The result of the
convolution is transformed into likelihood probabilities using a max pooling
layer. This procedure maps a frame of features into corresponding likelihood
probabilities.

and batch size led the model to exceed the GPU memory.
Therefore, the frame rate is set to 15 as the original paper and
the batch size is set to 500. The first layer of the CNN is the
convolution of the input features with the filters.

Fig. 3. CNN Layers with full weight sharing

Seen on Figure 3, the full weight sharing approach uses
three layers of input. The first one is the input itself with
feature maps. The second and the third layer is the second and
third derivative of the input features respectively. This way, the
information given to CNN is better. After the convolutional
and pooling layers, CNN passes the weights from a fully-
connected layer to yield likelihood probabilities for each
frame. The last layer is a standard multi layer perceptron with
1000 neurons. It maps the weights to 39 possible phonemes
with different probabilities. With the largest one indicating the
decision for that frame. The pooling layer is useful in terms of
computation time and also it finds a relation within the frames.

1) Subsubsection Heading Here: Subsubsection text here.

B. The Use of HMM in Speech
Hidden Markov Models are an example of unsupervised

learning where there are no target labels for the model to

decrease the loss on. These models are commonly used in
speech recognition for finding the state transition and emission
probablities. The state transition and emission probabilities of
the HMM is trained by using Baum-Welch algorithm which
is an expectation maximization algorithm. These probabilities
fit themselves according to the given observation sequences.
After the HMM is trained, the hidden state sequence are
decoded by Viterbi algorithm which finds the sequence that
finds the maximum likelihood path.

Fig. 4. Train error

For speech applications the HMM is used for decoding
the speech observations which can be phonemes or words.
The idea is to find the phoneme that maximizes the product
of the likelihood and the prior probabilities. The likelihood
probability includes the acoustic information which is given
the acoustic features, which phoneme is observed. The prior
probability includes the language information which is given
a sequence of words, what is the probability of the next word
or phoneme. For language modelling, the conventional method
is to use the n-grams method, but recently this method is
replaced by the recurrent neural networks (RNN), or gated
recurrent neural networks, such as LSTM. For this project, we
have implemented a bigrams method as language modelling.
This predicts the probability of given the previous phoneme
what is the probability of the next phoneme. For the acoustic
observation, the convention was to use the Gaussian Mixtures
Models (GMM) which model the likelihood probability for
each state. However, the GMM’s are replaced recently by
CNN’s which are used for extracting the observation prob-
abilties used in HMM. Figure 5 shows the main parts of a
HMM/DNN hybrid. The speech are seperated into its frames,
and the features are extracted by using method such as mel
frequency cepstral coefficients. Then, the hidden states are
trained, and after the training, the likelihood or the observation
probabilities are used as the emission probabilities from the
hidden states of the HMM. Then, the observation sequence
which was given by the deep neural network was used in the
Viterbi decoder with the state transition and emission matrices.
The decoded output gives the likely states that are results of
the Viterbi decoder.

The paper that we implemented use a CNN for extracting
these probabilities. It first trains a GMM/HMM model for
finding the hidden state allignments. Then, it uses these state



3

Fig. 5. HMM with DNN

allignments as target variables for the CNN model to train
on. This method is called forced allignment. After the CNN
is trained, the HMM model is used for decoding the hidden
states by using the Viterbi decoder. The HMM used in the
paper is a 3 state HMM for each of the given phonemes, and
it trains one HMM for each of the phonemes.

In the project, we have implemented the HMM by using
39 states which correspond to the 39 output neurons of the
CNN. This 39 states represent 39 different phonemes. So, as
the acoustic modeling, we used the output of the HMM, but
unlike the paper implementation, we have taken the phoneme
that has the highest probability and send the probabilties of the
other states to a small value. Then, as the language modeling,
we used bigrams method for each of the transition probabilities
of the hidden states that emit a single phoneme. The state
transition probabilities are calculated using the frequency of
the phoneme, or the output of the CNN layer. This determines
the state transition matrix, and with the emission matrix and
the given observation sequence, the Viterbi algorithm finds the
most likely states to generate the phoneme.

III. IMPLEMENTATION DETAILS

The following are the hyper-parameters and the imple-
mentation details about this model. The implementation is
made using Knet[1] Library for Julia. The model is trained on
Amazon GPU instances. Optimization methods used are Adam
and SGD. Adam seems to work better for this framework. It
takes longer time for SGD to converge. No learning rate is
used. Adam optimizer configures a learning rate by itself.
The convolutional layer sizes are taken from the original paper.
The sizes of the convolutional layers can be changed within the
limitation of the memory of the current workspace. However,

it should be noted that larger convolutional layer sizes increase
the total time it takes for the model to train.

IV. RESULTS

We have trained our model on GPU for approximately 2
hours. Figure 6 [train error] shows the train loss using Adam
optimizer. After 60 iterations the train error is 0.5. Continuing
to train the model after this

Fig. 6. Train error

V. CONCLUSION

In this paper, we have described how to apply hidden
Markov models and Convolutional Neural Networks to speech
recognition. The paper shows that a performance improve-
ment can be obtained relative to the standard use of Deep
Neural Networks with the use of weight parameters. The
most significant improvement is obtained using the multiple
frame per iteration approach. Giving multiple frames at a
time to convolutional neural network improved the accuracy
of the model significantly. (about 20% relative increase). The
proposed framework of hybrid CNN-HMM approach increase
the performance of hidden Markov model with the use of
starting the hidden Markov model with the likely predicted
observation from the output of convolutional neural network.
In addition, this paper also proposes a new limited weight
sharing that is standard in convolutional neural network appli-
cations for image processing but not used in speech processing
that often. This limited weight sharing technique leads to
fewer number of units in the pooling layer which lead to a
smaller model size. This is efficient because it reduces the
computational complexity of the model which normally uses
full weight sharing technique.
TIMIT phone recognition performance can be increased with a
variety of convolutional neural network parameters and model
design settings. One should note that the use of random
weights initialization for the hidden Markov model yields a
decrease in the accuracy of the model and Gaussian Mixture
Model should be used instead of random weights initialization



4

if possible. Finally, the result of this experiment is feasible
even with a slight error rate of the model.

ACKNOWLEDGMENT

The authors would like to acknowledge Engin Erzin for his
helpful lectures and advices.
In addition, the authors would like to thank the owners of
TIMIT dataset.

REFERENCES

[1] Yuret, Deniz Knet: beginning deep learning with 100 lines of Julia, 2016
Machine Learning Systems Workshop at NIPS 2016
https://github.com/denizyuret/Knet.jl


