&V, KOC UNIVERSITY

1\

College of Engineering
COMP 491 — Computer Engineering Design Project
Final Report

Multi-party WebRTC Videoconferencing over
Software-Defined Networks

Baris Can KAYA & Berkan HIZIROGLU

Project Advisor:
Prof. A. Murat TEKALP

June 6" 2018

Table of Contents

LN 1 T TP PPPPP PP RPPRP 3
B 113 (T L1 o1 (034 OO P PR POPPPPPPPPPPPPN 4
3 SYSLEIM DESIGN e a e e e e e e e e e e e aaaaaaaaaas 6
4- ANalysis and RESUILSeviiiiiiiiiiiiiiiiiiitiiite e e e s e e e e e e e e e e e e e e e e e aaeaaaeaaeaeaeeeeeeeeeeeeeeeeeeeeeeeeenes 10
R 0] 117 (31 (o) 1 PP P PP OPPPPPPPPPPPRO 13
R) (0 (0 11T PP P PP PPPPPPPPPPPPO 14

1- Abstract

In our senior design project, our aim was to propose an architecture and implementation of
third-party video service providers (VSP) to offer WebRTC videoconferencing services at a
predictable and stable quality level in collaboration with network service providers (NSP) over a
multi-operator SDN environment. Our multi-party WebRTC videoconferencing architecture uses
a selective forwarding unit (SFU) where all peers send their video streams, and all streams are
distributed to peers. In our architecture and implementations, clients perform motion-adaptive
layer selection to adapt their send rates to the bandwidths reserved between the endpoints, and
clients communicate through Google Chrome browser that supports VP9 codec, which is the most
popular codec for scalable video coding and real time video communications. Our experiments
show that the proposed framework yields excellent results with stable video quality when

compared with the default service in terms of video quality parameters.

In our proposed managed WebRTC services, the VSP collaborates with the NSP, where
the NSP implements network slicing to offer per-flow end-to-end quality of service (QoS) by
computing paths between clients, with specified bandwidth and delay parameters, and performing
queue management at switches. In traditional WebRTC, VSP does not collaborate with NSP, so

the best-effort WebRTC Service has no control over the network.

In our test environment, we have analyzed the remote videos of peers in multi-party
WebRTC videoconferencing. We made experiments to show the default service's and our managed
service's reaction in the cases of high cross traffic and high motion content in remote videos. As
we proposed, our managed WebRTC service performs stable and predictable video quality even if

there is high cross traffic in the network.

2- Introduction

WebRTC is a popular protocol for real-time communications (RTC) over the Internet that
allows browser-to-browser voice, video, and data communications using simple Javascript APIs.
Moreover, WebRTC serves to the goal of the next generation services with its device independent
access to 5G. Due to the growing video traffic and bandwidth limitations in the internet, providing
a predictable and stable video quality for real time communications became a critical problem in

both academia and industry.

Software-defined networking (SDN) is a central theme of the upcoming 5G standards. It
emphasizes separation of data planes and control planes by gathering all control planes in one hand
called SDN controller. SDN is also a flexible and feasible network architecture for real time video

communications due to its directly programmable and centrally manageable qualities.

Although video traffic in the Internet is increasing dramatically with the years, this is not
contributing to the revenues of the NSPs because NSPs cannot help VSPs for videoconferencing
with stable video quality due to the high traffic. This causes NSPs to lose their customers who
want to make videoconferencing with stable video quality. The advent of WebRTC services
combined with NSPs deploying SDN provides an important opportunity for third-party VSPs and

NSPs to offer managed real-time communications services to increase their revenues.

In our senior design project, our aim was to design and implement managed multi-party
WebRTC videoconferencing over multi-SDN operator. Our architecture presents managed
services that provide videoconferencing with better video quality than default services in the case
of high cross traffic and high motion content in the streamed videos. As most of the users have
different geographical conditions, we have also aimed to present a managed WebRTC
videoconferencing architecture for users in different domains to enlarge our project's scope and

increase the novelty of the project.

There are works on best-effort WebRTC videoconferencing with scalable video coding

that include motion-adaptive resolution layer selection at clients for two-party point-to-

point conferencing [8] and motion-adaptive rate selection at clients and motion-adaptive layer
selection at the SFU for multi-party conferencing [9]. There is a work on managed DASH-
unidirectional video streaming services over SDN [12]. However, prior work on managed
WebRTC videoconferencing services over SDN is very limited. Launching WebRTC services in
a single-operator SDN environment was discussed in a concept paper on ’network as a service”
[14], which did not have an implementation. Implementation of dynamic-network-

enabled RTC on a proof-of-concept 5G network was discussed in [15] SDN environment, which
extends [13] and [9]. As a result of literature review, our managed multi-party WebRTC
conferencing over multi-SDN operator project has combination of new videoconferencing and

networking concepts.

3- System Design

Firstly, we have implemented Traffic Engineering Manager (TEM) and new SDN
controller modules for network slice orchestration in NSP. TEM is implemented as a separate
project in JAVA from SDN Controller. We successfully implemented specialized Traffic
Engineering Manager for a domain that finds the optimal path with respect to delay and satisfies
bandwidth requirement agreed by clients and service providers. The path calculation simply
follows constrained Dijkstra’s algorithm where the constraint is delay, and we apply the
constrained Dijkstra’s algorithm for the network topologies. While we calculate the optimal path
for videoconferencing, our algorithm only takes account for the links whose capacity satisfy the
bandwidth requirement. The TEM in the NSP sends the optimal path to the SDN controller, and
SDN controller updates the flow tables of the switches by writing rules to switches. The rules
make the switches send the video packets to the next switch by following the route that TEM
calculates. In detail, TEM firstly gets the network topology from SDN controller, port number of
switches and bandwidth information of the links in the topology. When the TEM gathers all the
required information from the SDN controller, TEM represents the topology as a graph, and runs
our algorithm. When the controller sends the request, TEM returns a string array consisting of
switch names in the path, and an integer array consisting of port numbers of the switches to
provide the E2E communication. Moreover, when two peer make videoconferencing, where one
of them is from the master domain which has VSP server, and the other one is from a different
domain which is linked to the master domain via GRE Tunnel, TEM finds paths between
PEERI-SFU, SFU-END_SWITCH (Switch in master domain and has GRE interface) and
END _SWITCH-PEER2. TEM also finds 3 paths for PEER2 and PEERI1. The six paths are sent
to the SDN controller from TEM when the SDN controller sends a request to TEM to stitch these
slices. Although TEM gets the network topology only once, SDN controller dynamically sends
new path requests to TEM with current capacities of links. TEM calculates and creates the paths
by using current bandwidth information. This process continues until the videoconferencing

ends.

NSP Server NSP Server NSP Server

I SDN Controller SDN Controller
Traffic Traffic REST APISI?N’C\OMW"” Traffic REST API 3
Engineering | REST API s Engineering 01 AT Engineering S
Manager : Manager % Manager \
~ \ - |
- AR Lt P
(R / Video Service Provider 7
\ 7
- 4 WebRTC Selective

= 7z / / Signaling

Forwarding
/ / Server

Unit

} WebRTC Service Manager ‘

Figure 1: Multi-party WebRTC Service Architecture

The second important responsibility of NSP in our design is queue management to provide
end-to-end slice reservation for specified bandwidth. Sub-slices within each NSP network are
implemented by directing managed flows to special OpenFlow queues that are set up on switches
by the SDN controller. The QueuePusher module in the Floodlight SDN controller allows us to
open OpenFlow Queues. In collaboration with the QueuePusher module, we also used OVS
database to open the queues. We opened an OVS manager that listens local 9091 port. By giving

reference queue ids, we put the network flows to the queues.

In the side of VSP, we provide end-to-end WebRTC Service management. Our WebRTC
service manage E2E network slice reservations by collaborating with the involved NSPs as
mentioned before. Firstly, clients initiate a session by signing in to the WSS and exchanging SDP
and ICE objects as they normally would do to initiate a WebRTC session. SDP includes client
terminal type with their video capture/display resolutions. The agreed bandwidth guarantee is
specified by also using display resolutions and terminal type. For example, a user makes
videoconferencing via a mobile phone reserves lower bandwidth guarantee when compared with
a user that makes videoconferencing via a laptop. In other words, the configurations of video

encoders at clients are arranged by VSP by considering clients’ SDP information.

Floodlight SDN
Controller

Mininet /L\J\

Cloud ~(X VSP SERVER

/S Hw-Inf 1
PEER 1
g 9
Floodlight SDN gf < Floodlight SDN
Controller = ‘é” Controller L.
< 1= < < Mininet
- b a % 1) Cloud
Mininet < & 2\ O %
Cloud / \ \ = /‘J / / | N

N/ = D —
“| _GRET! LIN = N :
! \
\

PEER 3

Figure 2: Multi-Domain Test Envoirment for Multi-Party WebRTC Videoconferencing

In our test environment, we composed two NSP domains, with 10 virtual switches each,
using the Mininet running on a server. While we design topologies, we use Georgia Tech’s network
topology simulator to make similar our distribution of switches and links to real case scenarios.
Then, we mapped the results of the simulator to the Mininet topologies. Each NSP domain has one
border gateway, where border gateways are connected with each other using GRE tunnels as
depicted in Figure 2. GRE tunnelling configuration requires change of MTU size of GRE tunnel
interface. We have decided the correct MTU size by analyzing the UDP packets in Wireshark to
find the overheaded bytes due to the using of GRE Tunnels. Usage of GRE tunnels creates a
multiple interface problem that blocks NAT which is used for the sending IP address of hosts to
SDN controller. As there are limited ways to connect multiple Mininet domains to each other, we
start to send IP addresses to the controller via post requests from our local domain. Each NSP
domain runs a separate instance of the Floodlight controller as SDN controller. The video service
provider (VSP), which runs a WebRTC signaling server (WSS), a WebRTC service manager
(WSM), and a Janus SFU [20], is a virtual host in one of the NSP domains. The WSS gathers 1P
addresses and terminal types of all WebRTC peers that are connected to it. The Janus application

runs on the same virtual host that runs WSS and WSM applications. There are three WebRTC

peers that run WebRTC in Chrome browsers [17] on real hosts (three laptops), one in each NSP
domain, which are connected to the server running the Mininet using ethernet to USB hardware
interfaces (hw-intf). The WebRTC peers are directed to Janus Gateway VP9-SVC video room,
which serves as the SFU in our test environment. We decided to use real hosts to run WebRTC in
Chrome browsers on separate laptops rather than on virtual hosts because running the Mininet,
SDN controller, WebRTC signaling server, and

multiple instances of VP9 encoder/decoder on the same server can cause real-time CPU

performance limitations.

4- Analysis and Results

We compare the performance of the proposed managed multi-party WebRTC service
using scalable VP9 video coding with that of the best-effort default WebRTC (provided by
Google) in our test environment with three Chrome WebRTC peers running on real hosts as
described in Section V-A.All clients perform scalable VP9 coding with 2 spatial layers, where
the base layer is 640x480 and the enhancement layer is 320%240. The total bitrate for 2 layers is
600 kbps. Peers 1 and 2 receive 480p, and Peer 3 receives 240p video due to their terminal types.
The reserved upload rate for all peers and download rate for peers 1 and 2 are 600 kbps. The
download rate for peer 3 is 200 kbps. We record the local and remote videos as raw .yuv files for
PSNR comparison. The results are compared in terms of video bitrate, resolution, quantization
parameter (qp), and peak-signal-to-noise ratio (PSNR) in the presence of different amount of
video motion and cross traffic. The frame rate is set to 30 Hz. We present results only for video

from peer 1 to SFU, SFU to peer 2, and SFU to peer 3 due to space limitations.

Streaming from Peer I to SFU: The video has high motion between 25-60 sec. and low
motion at other times. Cross traffic is emulated by limiting the bitrate from Peer 1 to SFU
between 15-35 sec. using [21]. In the managed service, the reserved bitrate is not affected by the

cross traffic.

VIDEO STREAMING RESULTS FROM PEER 1 TO SFU
T T 1
HIGH MOTION
CROSS TRAFFIC

~ T
5L Y oy P » o L g /ww\ o e e Y ""“J‘i
& \
< | e i S
0 I 1 1 I I
o 10 20 30 40 50 60
80 T
60 |5 P ey _
i "y -
&40 *\\ hw‘wwwwwﬁj\/ 4 M _— — bt
20 Y OO A
0 I 1 | ! 1
0 10 20 30 40 50 60
time (sec)
Default WebRTC Managed WebRTC

Streaming from the SFU to Peer 2: The cross traffic is applied between the SFU and Peer

2 during 40-60 seconds. In default service, SFU drops a spatial layer and decreases

10

the resolution to 240p to adapt to the network conditions. The results are depicted in Figure 4.
Although the terminal type of Peer 2 is set to 480p, the received video quality of

Peer 2 decreases remarkably.

VIDEO STREAMING RESULTS FROM SFU TO PEER 2
T

6 i T HIGH MOTION | !
: I [CROSS TRAFFIC
° | 1 L | |
o 10 20 30 40 50 60
=10°
T —— LR [L ,,w,\‘f‘L« Y N P S
g5 E/ N TN |
Q. y
= s ey e S R R
o) L 1 1 L L
o 10 20 30 40 50 60
T
50 [> . o
s \\\“ it L L m—— L -,
R T -t
o ; ‘ ‘
o 10 20 30 40 50 60

time (sec)

Default WebRTC Managed WebRTC

Streaming from the SFU to Peer 3: Peer 3 receives 240p video due to its terminal type.

When the cross traffic is applied between Peer 1 and SFU between 15-35 seconds, the available

bandwidth between Peerl and SFU decreases to 200 kbps in the default service. On the other
hand, SFU drops a spatial layer to send 240p video. Finally, the available bandwidth for SFU-
Peer 3 decreases to approximately 70 kbps as depicted in Figure 5.

11

VIDEO STREAMING RESULTS FROM SFU TO PEER 3
T T

6
T
4 I HIGH MOTION I
S ,
° I I L I I
o 10 20 30 40 50 60
5
g x10 .
6 -
&4 .
2 e R g IS G b A A
o b I e I I
o 10 20 30 40 50 60
80 T
60 S wwmwwm«mwwwr«wm .
a 40 . T =
g 40 . W/M\WNWMWW e — L
20 = R—
0 I 1 1 L L
o 10 20 30 40 50 60
time (sec)
‘ Default WebRTC Managed WebRTC

Experimental results show that the managed WebRTC service provides excellent and
steady video quality in all cases. However, in the default best-effort service, network congestion
(cross traffic) negatively affects the quality of the video received by peers 2 and 3, where we

observe that the video either stalls or becomes blurry.

12

5- Conclusions

We propose an architecture and an implementation for a third-party over-the-top VSP to
provide managed WebRTC videoconferencing services over network slices with reserved
bandwidth in collaboration with the NSP (operator). Since in a videoconference different peers
can be in different geographical locations with different NSPs, the proposed architecture includes
a WebRTC service manager that orchestrates E2E network slice provisioning among multiple
NSPs. We provided experimental results to validate the proposed architecture in the Mininet
environment using real OVS switches and Floodlight SDN controllers for each network
operator domain. Our experimental results clearly demonstrate that the proposed managed
WebRTC services overcomes well-known video quality limitations of today’s best-effort
WebRTC communications. For further design, TEM can be developed to serve for path

calculation in the case of multiple GRE’s.

In our current design, although there is only one GRE for each domain, TEM follows the
switch has GRE mandatorily. If we could resolve the multiple interface problem, there would be
multiple GRE’s in a domain. Therefore, there will be lots of combinations for TEM and the
optimization of TEM will increase by considering other GRE’s. For further researches,
implementation of multicasting for switches instead of SFU usage, may decrease delay time and

improve the bandwidth consumption.

13

6- References

[1] H. Alvestrand,”Overview: Real Time Protocols for Browser-based Applications,” draft-ietf-
rtcweb-overview-19, Nov. 12, 2017.

[2] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, Analysis and design of the Google
congestion control for web real-time communication (WebRTC),” Proc. 7th Int. Conf. on
Multimedia Systems, 2016.

[3] A. Grange, P. de Rivaz, and J. Hunt, VP9 Bitstream and Decoding Process Specification, 31
March 2016.https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-
bitstream-specification-v0.6-20160331-draft.pdf

[4] J. De Cock, A. Mavlankar, A. Moorthy, and A. Aaron, ”A large-scale video codec
comparison of x264, x265 and libvpx for practical VOD applications,” SPIE Proceedings Vol.
9971, Applications of Digital Image Processing XXXIX, San Diego, CA, Sep. 2016.

[5] VP9 video codec implementation, available online https://www.webmproject.org/vp9/

[6] Software-defined networking: The new norm for networks, Open Networking Fundation
(ONF) White Paper, 2012.

[7] A. Eleftheriadis, M.R. Civanlar, and O. Shapiro, Multipoint videoconferencing with scalable
video coding,” Jou. of Zhejiang University Science A, vol. 7, no. 5, pp. 696-705, 2006.

[8] G. Bakar, R. A. Kirmizioglu, and A. M. Tekalp, "Motion-based adaptive streaming in
WebRTC using spatio-temporal scalable VP9 video coding,” IEEE Globecom, Singapore, Dec.
2017.

[9] R. A. Kirmizioglu, B. C. Kaya, and A. M. Tekalp, "Multi-party WebRTC videoconferencing
using scalable VP9 video: From best effort over-the-top to managed value-added services,” IEEE
Int. Conf.

Multimedia and Expo (ICME), San Diego, CA, USA, July 2018.

[10] K.-F. Ng, M.-Y. Ching, Y. Liu, T. Cai, L. Li, and W. Chou, ”A P2PMCU approach to multi-
Party video conference with WebRTC,” Int.Jou. of Future Computer and Communication, vol. 3,
no. 5, Oct. 2014.

[11] S. Yoon, T. Na, and H.-Y. Ryu, ”An implementation of Web-RTC based audio/video
conferencing system on virtualized cloud,” IEEE Int. Conf. on Consumer Electronics (ICCE),
2016.

[12] K.T. Bagci, K.E. Sahin, and A. M. Tekalp, Compete or collaborate: Architectures for

collaborative DASH video over future networks,IEEE Trans. on Multimedia, vol. 19, no. 10, pp.
2152-2165, Oct. 2017.

14

[13] K. T. Bagci, S. Yilmaz, K. E. Sahin, and A. M. Tekalp, "Dynamic end-to-end service-level
negotiation over multi-domain software defined networks,” IEEE Int. Conf. on Commun. and
Electronics (ICCE), Ha Long Bay, Vietnam, July 2016.

[14] A. Boubendir, E. Bertin, and N. Simoni, ”Network as-a-Service: the WebRTC case: How
SDN and NFV set a solid Telco-OTT groundwork,” Int. Conf. on the Network of the Future
(NOF), Montreal,

Canada, 30 Sep.- 2 Oct. 2015.

[15] S. Jero, V. K. Gurbani, R. Miller, B. Cilli, C. Payette and S. Sharma, ”Dynamic control of
real-time communication (RTC) using SDN: A case study of a 5G end-to-end service,” Proc. of
IEEE/IFIP Network Operations and Management Symposium (NOMS), 2016.

[16] E. W. Dijkstra A note on two problems in connexion with graphs,” Numerische
Mathematik 1, 269-271.

[17] WebRTC source code, available online
https://chromium.googlesource.com/external/webrtc/

[18] Mininet Virtual Network, available online http://mininet.org/

[19] Project Floodlight Open-Source SDN Controller, available online
http://www.projectfloodlight.org/floodlight/

[20] Janus Gateway, online https://github.com/meetecho/janus-gateway

Project Github Repo: https://github.com/bhiziroglu/Video-Conferencing-over-SDN

15

