
 

 

 
  

 

College of Engineering 
COMP 491 – Computer Engineering Design Project 

Final Report 
 
 

Multi-party WebRTC Videoconferencing over 
Software-Defined Networks 

 
 
 

Baris Can KAYA & Berkan HIZIROGLU 
 
 
 
 
 
 
 
 
 

Project Advisor: 
Prof. A. Murat TEKALP 

 
 

 
June 6th 2018 

 

 



 

2 

Table of Contents 
   1- Abstract ................................................................................................................................ 3 

2- Introduction .......................................................................................................................... 4 

3- System Design ...................................................................................................................... 6 

4- Analysis and Results ............................................................................................................ 10 

5- Conclusions ........................................................................................................................ 13 

6- References .......................................................................................................................... 14 

 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

   1- Abstract  
   

 In our senior design project, our aim was to propose an architecture and implementation of 

third-party video service providers (VSP) to offer WebRTC videoconferencing services at a 

predictable and stable quality level in collaboration with network service providers (NSP) over a 

multi-operator SDN environment. Our multi-party WebRTC videoconferencing architecture uses 

a selective forwarding unit (SFU) where all peers send their video streams, and all streams are 

distributed to peers. In our architecture and implementations, clients perform motion-adaptive 

layer selection to adapt their send rates to the bandwidths reserved between the endpoints, and 

clients communicate through Google Chrome browser that supports VP9 codec, which is the most 

popular codec for scalable video coding and real time video communications. Our experiments 

show that the proposed framework yields excellent results with stable video quality when 

compared with the default service in terms of video quality parameters. 

 

 In our proposed managed WebRTC services, the VSP collaborates with the NSP, where 

the NSP implements network slicing to offer per-flow end-to-end quality of service (QoS) by 

computing paths between clients, with specified bandwidth and delay parameters, and performing 

queue management at switches. In traditional WebRTC, VSP does not collaborate with NSP, so 

the best-effort WebRTC Service has no control over the network.   

 

 In our test environment, we have analyzed the remote videos of peers in multi-party 

WebRTC videoconferencing. We made experiments to show the default service's and our managed 

service's reaction in the cases of high cross traffic and high motion content in remote videos. As 

we proposed, our managed WebRTC service performs stable and predictable video quality even if 

there is high cross traffic in the network.  

 

  

 



 

4 

2- Introduction 

 
WebRTC is a popular protocol for real-time communications (RTC) over the Internet that 

allows browser-to-browser voice, video, and data communications using simple Javascript APIs. 

Moreover, WebRTC serves to the goal of the next generation services with its device independent 

access to 5G. Due to the growing video traffic and bandwidth limitations in the internet, providing 

a predictable and stable video quality for real time communications became a critical problem in 

both academia and industry.  

 

Software-defined networking (SDN) is a central theme of the upcoming 5G standards. It 

emphasizes separation of data planes and control planes by gathering all control planes in one hand 

called SDN controller. SDN is also a flexible and feasible network architecture for real time video 

communications due to its directly programmable and centrally manageable qualities.  

 

Although video traffic in the Internet is increasing dramatically with the years, this is not 

contributing to the revenues of the NSPs because NSPs cannot help VSPs for videoconferencing 

with stable video quality due to the high traffic. This causes NSPs to lose their customers who 

want to make videoconferencing with stable video quality. The advent of WebRTC services 

combined with NSPs deploying SDN provides an important opportunity for third-party VSPs and 

NSPs to offer managed real-time communications services to increase their revenues. 

 

In our senior design project, our aim was to design and implement managed multi-party 

WebRTC videoconferencing over multi-SDN operator. Our architecture presents managed 

services that provide videoconferencing with better video quality than default services in the case 

of high cross traffic and high motion content in the streamed videos. As most of the users have 

different geographical conditions, we have also aimed to present a managed WebRTC 

videoconferencing architecture for users in different domains to enlarge our project's scope and 

increase the novelty of the project.      

 

There are works on best-effort WebRTC videoconferencing with scalable video coding 

that include motion-adaptive resolution layer selection at clients for two-party point-to- 



 

5 

point conferencing [8] and motion-adaptive rate selection at clients and motion-adaptive layer 

selection at the SFU for multi-party conferencing [9]. There is a work on managed DASH-

unidirectional video streaming services over SDN [12]. However, prior work on managed 

WebRTC videoconferencing services over SDN is very limited. Launching WebRTC services in 

a single-operator SDN environment was discussed in a concept paper on ”network as a service” 

[14], which did not have an implementation. Implementation of dynamic-network- 

enabled RTC on a proof-of-concept 5G network was discussed in [15] SDN environment, which 

extends [13] and [9]. As a result of literature review, our managed multi-party WebRTC 

conferencing over multi-SDN operator project has combination of new videoconferencing and 

networking concepts.   

 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

 



 

6 

3- System Design 
 

Firstly, we have implemented Traffic Engineering Manager (TEM) and new SDN 

controller modules for network slice orchestration in NSP. TEM is implemented as a separate 

project in JAVA from SDN Controller. We successfully implemented specialized Traffic 

Engineering Manager for a domain that finds the optimal path with respect to delay and satisfies 

bandwidth requirement agreed by clients and service providers. The path calculation simply 

follows constrained Dijkstra’s algorithm where the constraint is delay, and we apply the 

constrained Dijkstra’s algorithm for the network topologies. While we calculate the optimal path 

for videoconferencing, our algorithm only takes account for the links whose capacity satisfy the 

bandwidth requirement. The TEM in the NSP sends the optimal path to the SDN controller, and 

SDN controller updates the flow tables of the switches by writing rules to switches. The rules 

make the switches send the video packets to the next switch by following the route that TEM 

calculates. In detail, TEM firstly gets the network topology from SDN controller, port number of 

switches and bandwidth information of the links in the topology.  When the TEM gathers all the 

required information from the SDN controller, TEM represents the topology as a graph, and runs 

our algorithm. When the controller sends the request, TEM returns a string array consisting of 

switch names in the path, and an integer array consisting of port numbers of the switches to 

provide the E2E communication. Moreover, when two peer make videoconferencing, where one 

of them is from the master domain which has VSP server, and the other one is from a different 

domain which is linked to the master domain via GRE Tunnel, TEM finds paths between 

PEER1-SFU, SFU-END_SWITCH (Switch in master domain and has GRE interface) and 

END_SWITCH-PEER2.  TEM also finds 3 paths for PEER2 and PEER1. The six paths are sent 

to the SDN controller from TEM when the SDN controller sends a request to TEM to stitch these 

slices. Although TEM gets the network topology only once, SDN controller dynamically sends 

new path requests to TEM with current capacities of links. TEM calculates and creates the paths 

by using current bandwidth information. This process continues until the videoconferencing 

ends.   



 

7 

 
Figure 1: Multi-party WebRTC Service Architecture 

 The second important responsibility of NSP in our design is queue management to provide 

end-to-end slice reservation for specified bandwidth. Sub-slices within each NSP network are 

implemented by directing managed flows to special OpenFlow queues that are set up on switches 

by the SDN controller. The QueuePusher module in the Floodlight SDN controller allows us to 

open OpenFlow Queues. In collaboration with the QueuePusher module, we also used OVS 

database to open the queues. We opened an OVS manager that listens local 9091 port. By giving 

reference queue ids, we put the network flows to the queues.   

 

 In the side of VSP, we provide end-to-end WebRTC Service management. Our WebRTC 

service manage E2E network slice reservations by collaborating with the involved NSPs as 

mentioned before. Firstly, clients initiate a session by signing in to the WSS and exchanging SDP 

and ICE objects as they normally would do to initiate a WebRTC session. SDP includes client 

terminal type with their video capture/display resolutions. The agreed bandwidth guarantee is 

specified by also using display resolutions and terminal type. For example, a user makes 

videoconferencing via a mobile phone reserves lower bandwidth guarantee when compared with 

a user that makes videoconferencing via a laptop. In other words, the configurations of video 

encoders at clients are arranged by VSP by considering clients’ SDP information.   



 

8 

 
Figure 2: Multi-Domain Test Envoirment for Multi-Party WebRTC Videoconferencing 

 In our test environment, we composed two NSP domains, with 10 virtual switches each, 

using the Mininet running on a server. While we design topologies, we use Georgia Tech’s network 

topology simulator to make similar our distribution of switches and links to real case scenarios. 

Then, we mapped the results of the simulator to the Mininet topologies. Each NSP domain has one 

border gateway, where border gateways are connected with each other using GRE tunnels as 

depicted in Figure 2. GRE tunnelling configuration requires change of MTU size of GRE tunnel 

interface. We have decided the correct MTU size by analyzing the UDP packets in Wireshark to 

find the overheaded bytes due to the using of GRE Tunnels. Usage of GRE tunnels creates a 

multiple interface problem that blocks NAT which is used for the sending IP address of hosts to 

SDN controller. As there are limited ways to connect multiple Mininet domains to each other, we 

start to send IP addresses to the controller via post requests from our local domain. Each NSP 

domain runs a separate instance of the Floodlight controller as SDN controller. The video service 

provider (VSP), which runs a WebRTC signaling server (WSS), a WebRTC service manager 

(WSM), and a Janus SFU [20], is a virtual host in one of the NSP domains. The WSS gathers IP 

addresses and terminal types of all WebRTC peers that are connected to it. The Janus application 

runs on the same virtual host that runs WSS and WSM applications. There are three WebRTC 



 

9 

peers that run WebRTC in Chrome browsers [17] on real hosts (three laptops), one in each NSP 

domain, which are connected to the server running the Mininet using ethernet to USB hardware 

interfaces (hw-intf). The WebRTC peers are directed to Janus Gateway VP9-SVC video room, 

which serves as the SFU in our test environment. We decided to use real hosts to run WebRTC in 

Chrome browsers on separate laptops rather than on virtual hosts because running the Mininet, 

SDN controller, WebRTC signaling server, and 

multiple instances of VP9 encoder/decoder on the same server can cause real-time CPU 

performance limitations. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 



 

10 

4- Analysis and Results 

We compare the performance of the proposed managed multi-party WebRTC service 

using scalable VP9 video coding with that of the best-effort default WebRTC (provided by 

Google) in our test environment with three Chrome WebRTC peers running on real hosts as 

described in Section V-A.All clients perform scalable VP9 coding with 2 spatial layers, where 

the base layer is 640×480 and the enhancement layer is 320×240. The total bitrate for 2 layers is 

600 kbps. Peers 1 and 2 receive 480p, and Peer 3 receives 240p video due to their terminal types. 

The reserved upload rate for all peers and download rate for peers 1 and 2 are 600 kbps. The 

download rate for peer 3 is 200 kbps. We record the local and remote videos as raw .yuv files for 

PSNR comparison. The results are compared in terms of video bitrate, resolution, quantization 

parameter (qp), and peak-signal-to-noise ratio (PSNR) in the presence of different amount of 

video motion and cross traffic. The frame rate is set to 30 Hz. We present results only for video 

from peer 1 to SFU, SFU to peer 2, and SFU to peer 3 due to space limitations. 

 

 Streaming from Peer 1 to SFU: The video has high motion between 25-60 sec. and low 

motion at other times. Cross traffic is emulated by limiting the bitrate from Peer 1 to SFU 

between 15-35 sec. using [21]. In the managed service, the reserved bitrate is not affected by the 

cross traffic.  

 
Streaming from the SFU to Peer 2: The cross traffic is applied between the SFU and Peer 

2 during 40-60 seconds. In default service, SFU drops a spatial layer and decreases 



 

11 

the resolution to 240p to adapt to the network conditions. The results are depicted in Figure 4. 

Although the terminal type of Peer 2 is set to 480p, the received video quality of 

Peer 2 decreases remarkably.  

 
 
 

Streaming from the SFU to Peer 3: Peer 3 receives 240p video due to its terminal type. 

When the cross traffic is applied between Peer 1 and SFU between 15-35 seconds, the available 

bandwidth between Peer1 and SFU decreases to 200 kbps in the default service. On the other 

hand, SFU drops a spatial layer to send 240p video. Finally, the available bandwidth for SFU-

Peer 3 decreases to approximately 70 kbps as depicted in Figure 5.  
 
 



 

12 

 
 
 

Experimental results show that the managed WebRTC service provides excellent and 

steady video quality in all cases. However, in the default best-effort service, network congestion 

(cross traffic) negatively affects the quality of the video received by peers 2 and 3, where we 

observe that the video either stalls or becomes blurry. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 



 

13 

5- Conclusions 
 

We propose an architecture and an implementation for a third-party over-the-top VSP to 

provide managed WebRTC videoconferencing services over network slices with reserved 

bandwidth in collaboration with the NSP (operator). Since in a videoconference different peers 

can be in different geographical locations with different NSPs, the proposed architecture includes 

a WebRTC service manager that orchestrates E2E network slice provisioning among multiple 

NSPs. We provided experimental results to validate the proposed architecture in the Mininet 

environment using real OVS switches and Floodlight SDN controllers for each network 

operator domain. Our experimental results clearly demonstrate that the proposed managed 

WebRTC services overcomes well-known video quality limitations of today’s best-effort 

WebRTC communications. For further design, TEM can be developed to serve for path 

calculation in the case of multiple GRE’s.  

 

In our current design, although there is only one GRE for each domain, TEM follows the 

switch has GRE mandatorily. If we could resolve the multiple interface problem, there would be 

multiple GRE’s in a domain. Therefore, there will be lots of combinations for TEM and the 

optimization of TEM will increase by considering other GRE’s. For further researches, 

implementation of multicasting for switches instead of SFU usage, may decrease delay time and 

improve the bandwidth consumption.  

 
 
 
 
 
 
 
 
 
 
 
 



 

14 

6- References 
 
[1] H. Alvestrand,”Overview: Real Time Protocols for Browser-based Applications,” draft-ietf-
rtcweb-overview-19, Nov. 12, 2017. 
 
[2] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, Analysis and design of the Google 
congestion control for web real-time communication (WebRTC),” Proc. 7th Int. Conf. on 
Multimedia Systems, 2016. 
 
[3] A. Grange, P. de Rivaz, and J. Hunt, VP9 Bitstream and Decoding Process Specification, 31 
March 2016.https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-
bitstream-specification-v0.6-20160331-draft.pdf 
 
[4] J. De Cock, A. Mavlankar, A. Moorthy, and A. Aaron, ”A large-scale video codec 
comparison of x264, x265 and libvpx for practical VOD applications,” SPIE Proceedings Vol. 
9971, Applications of Digital Image Processing XXXIX, San Diego, CA, Sep. 2016. 
 
[5] VP9 video codec implementation, available online https://www.webmproject.org/vp9/ 
 
[6] Software-defined networking: The new norm for networks, Open Networking Fundation 
(ONF) White Paper, 2012. 
 
[7] A. Eleftheriadis, M.R. Civanlar, and O. Shapiro, Multipoint videoconferencing with scalable 
video coding,” Jou. of Zhejiang University Science A, vol. 7, no. 5, pp. 696-705, 2006. 
 
[8] G. Bakar, R. A. Kirmizioglu, and A. M. Tekalp, ”Motion-based adaptive streaming in 
WebRTC using spatio-temporal scalable VP9 video coding,” IEEE Globecom, Singapore, Dec. 
2017. 
 
[9] R. A. Kirmizioglu, B. C. Kaya, and A. M. Tekalp, ”Multi-party WebRTC videoconferencing 
using scalable VP9 video: From best effort over-the-top to managed value-added services,” IEEE 
Int. Conf. 
Multimedia and Expo (ICME), San Diego, CA, USA, July 2018. 
 
[10] K.-F. Ng, M.-Y. Ching, Y. Liu, T. Cai, L. Li, and W. Chou, ”A P2PMCU approach to multi-
Party video conference with WebRTC,” Int.Jou. of Future Computer and Communication, vol. 3, 
no. 5, Oct. 2014. 
 
[11] S. Yoon, T. Na, and H.-Y. Ryu, ”An implementation of Web-RTC based audio/video 
conferencing system on virtualized cloud,” IEEE Int. Conf. on Consumer Electronics (ICCE), 
2016. 
 
[12] K.T. Bagci, K.E. Sahin, and A. M. Tekalp, Compete or collaborate: Architectures for 
collaborative DASH video over future networks,IEEE Trans. on Multimedia, vol. 19, no. 10, pp. 
2152-2165, Oct. 2017. 



 

15 

 
[13] K. T. Bagci, S. Yilmaz, K. E. Sahin, and A. M. Tekalp, ”Dynamic end-to-end service-level 
negotiation over multi-domain software defined networks,” IEEE Int. Conf. on Commun. and 
Electronics (ICCE), Ha Long Bay, Vietnam, July 2016. 
 
[14] A. Boubendir, E. Bertin, and N. Simoni, ”Network as-a-Service: the WebRTC case: How 
SDN and NFV set a solid Telco-OTT groundwork,” Int. Conf. on the Network of the Future 
(NOF), Montreal, 
Canada, 30 Sep.- 2 Oct. 2015. 
 
[15] S. Jero, V. K. Gurbani, R. Miller, B. Cilli, C. Payette and S. Sharma, ”Dynamic control of 
real-time communication (RTC) using SDN: A case study of a 5G end-to-end service,” Proc. of 
IEEE/IFIP Network Operations and Management Symposium (NOMS), 2016. 
 
[16] E. W. Dijkstra ”A note on two problems in connexion with graphs,” Numerische 
Mathematik 1, 269-271. 
[17] WebRTC source code, available online 
https://chromium.googlesource.com/external/webrtc/ 
 
[18] Mininet Virtual Network, available online http://mininet.org/ 
 
[19] Project Floodlight Open-Source SDN Controller, available online 
http://www.projectfloodlight.org/floodlight/ 
 
[20] Janus Gateway, online https://github.com/meetecho/janus-gateway 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Project Github Repo: https://github.com/bhiziroglu/Video-Conferencing-over-SDN 


